Population Dynamical Model for AIDS Patients of a Particular Area

Shamsur Rahman¹, Atiqur Rahman²

¹Department of Mathematics Maulana Azad National Urdu University, Polytechnic Chandanpati Laharsani, Darbhanga-846007, Bihar, India
E-mail: shamsur@rediffmail.com, shamsur@indiatimes.com
²ICAR - Research Complex for Eastern Region Patna India
E-mail: rahman_patra@yahoo.com

Received Date: August 18, 2008
Accepted Date: October 18, 2010

Abstract. This is an attempt to translate the problem of AIDS patients into a mathematical problem, thereafter interpreting the solution in the language of real world. Here we proposed HIV/AIDS among the peoples as a resultant function of their unnatural sexual intercourses and obtained exponential HIV/AIDS patients growth model and logistic curve for HIV/AIDS patients. The interpretation of the logistic curve showed that the HIV/AIDS patient growth is massive and needs urgent care in terms of personal vulnerability of HIV injections.

Key words: AIDS Patient, Mathematical Problem, Resultant function, Unnatural Sexual Intercourses, Exponential HIV/AIDS Patients Growth Model and Logistic Curve.

2000 Mathematics Subject Classification: 97M10, 97M20.

1. Introduction

AIDS is incurable disease that slowly attacks and destroys the body's immune system. AIDS (Acquired Immune Deficiency Syndrome) is not hereditary and is characterized by a number of symptoms occurring together. The term syndrome is therefore used for defining AIDS. It is the HIV i.e. the Human Immune Deficiency Virus that finally leads to AIDS. The presence of HIV is particularly high in blood, semen of man, cerebrospinal fluid, and vaginal and cervical secretions of the woman. The HIV is transmitted through unnatural sexual intercourse, heterosexual or homosexual, either vaginal sex, oral sex or anal sex.

The statistics regarding HIV/AIDS given paper (Table 1) are those from United Nations Programme on HIV/AIDS (UNAIDS) and the World Health Organization (WHO) publications [2],[3],[4],[5]. From data it is observed that the total
number of AIDS patients was 33.4 million, and the total number of AIDS deaths was 2.5 million in 1998, and 39.5 million AIDS patients and the total number of AIDS deaths was 2.9 million in 2006. The people who had high-risk behavior for HIV infection were mainly MSM (Men having sex with men), FSW (female sex workers) and unnatural heterosexuality. Unnatural sexual (hetero or homo sexual) promiscuous behaviour is the most probable source of infection. More than 80 percent AIDS patients are due to unnatural hetero sexual or homo sexual relations ([6], [7], [8], [9]). AIDS patients in India were reported 86 percent in 2005 due to hetero sexual or homo sexual promiscuous behaviour [10].

Hypothesis: If the situation modeled some continuous variable(s) and we have some reasonable hypothesis about the rates of change of dependent variable(s); mathematical modeling in terms of differential equations arises. When we have a variable x depending on an independent variable t, we obtain a mathematical model in terms of ordinary differential equation of the first order if the hypothesis is about the rate of change $\frac{dx}{dt}$. Since the dynamics of HIV/AIDS infected population a particular area is depends on social and economical saturations which generate the factors responsible for the development and transmission of HIV. Let x be a parameter on which the dynamics of number of HIV/AIDS infected population depend and composed of two factors say α, which denotes the rate of increase, and β denote the rate of retardation of HIV/AIDS infected population. Then the total A be the number of AIDS patients of a particular area, then A will be the function of x i.e. $A(x)$. Then at $(x+\Delta x)$, number of AIDS patients will be equal to $A(x + \Delta x)$, and the change in HIV/AIDS infected population will be $A(x + \Delta x) - A(x)$ at the interval Δx. Then

$$A(x + \Delta x) - A(x) = (\alpha - \beta) A \Delta X$$

Suppose $\mu = \alpha - \beta$ Therefore

$$A(x + \Delta x) - A(x) = \mu A \Delta X$$

On dividing by Δx and taking $\Delta x \rightarrow 0$, we get

$$\frac{dA}{dx} = \mu A$$

Integrating equation (1), results

$$\log A = \mu x + \log C_1$$

$$A = C_1 e^{\mu x}$$

Now at $x = 0$, $A = A(0)$ which represents the value of A when the effect of the parameter x is insignificant, and then $C_1 = A(0)$, therefore

$$A(x) = A(0) e^{\mu x}$$

Which is an exponential curve ([11], [12]).
<table>
<thead>
<tr>
<th>Region</th>
<th>Adults & children living with HIV/AIDS</th>
<th>Adults & children newly infected with HIV</th>
<th>Adults & Child Deaths due to HIV</th>
<th>Modes(s) of transmission for adults living with HIV/AIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Saharan Africa</td>
<td>24.9 M 25.4 M 25.8 M</td>
<td>3.0 M 3.1 M 3.2 M</td>
<td>2.1 M 2.3 M 2.4 M</td>
<td>Hetero, MSN, IDU</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>550000 540000 510000</td>
<td>62000 92000 67000</td>
<td>55000 28000 58000</td>
<td>Hetero, IDU</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td>420000 541000 520000</td>
<td>Hetero, Sex worker, IDU</td>
</tr>
<tr>
<td>Asia</td>
<td>7.1 M 8.2 M 8.3 M</td>
<td>94000 1.18 M 1.1 M</td>
<td>4.5424 4.945 4.9102</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>Latin America</td>
<td>1.6 M 1.7 M 1.8 M</td>
<td>170000 240000 200000</td>
<td>59000 95000 65000</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>Caribbean</td>
<td>300000 440000 300000</td>
<td>29000 53000 30000</td>
<td>24000 36000 24000</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>Eastern Europe and Central Asia</td>
<td>1.2 M 1.4 M 1.6 M</td>
<td>270000 210000 270000</td>
<td>36000 60000 62000</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>North America, Western and Central Europe</td>
<td>1.8 M 1.6 M 1.9 M</td>
<td>63000 65000 65000</td>
<td>30000 32500 30000</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>Oceania</td>
<td>63000 35000 74000</td>
<td>8900 5000 8200</td>
<td>2000 7000 3600</td>
<td>MSM, Hetero, IDU</td>
</tr>
<tr>
<td>Total (million)</td>
<td>37.463 M 39.325 40.284</td>
<td>4.5424 4.945 4.9102</td>
<td>2.726 3.0995 3.1626</td>
<td>MSM, Hetero, IDU</td>
</tr>
</tbody>
</table>

Source: (i) UNAIDS and WHO, AIDS Epidemic Update: December 2004
From Logistic Theory there may be many sub parameter which decrease or increase the population of HIV/AIDS patients then α and β may be further cauterized and can be given:

$$\alpha = \alpha_1 - \alpha_2 A, \quad \beta = \beta_1 + \beta_2 A, \quad \alpha_1, \alpha_2, \beta_1, \beta_2 > 0$$

Therefore

$$\alpha - \beta = (\alpha_1 - \beta_1) - (\alpha_2 + \beta_2) A = \mu - \gamma A$$

and equation (1) becomes

$$\frac{dA}{dx} = (\mu - \gamma A)A \quad \mu > 0, \gamma > 0$$

On integration, we obtain

$$\frac{A(x)}{\mu - \gamma A(x)} = C_2 e^{\mu x}$$

or

$$A(x) = \frac{1}{\mu + \frac{1}{C_2} e^{-\mu x}}$$

Let λ be the value of x for which $A(x) = \mu/2$. Then

$$\frac{\mu}{2\lambda} = \frac{\mu/\gamma}{1 + \frac{1}{\gamma C_2} e^{-\mu \lambda}} \Rightarrow C_2 = \frac{1}{\gamma} e^{-\mu \lambda}$$

Substituting this in equation (6)

$$A(x) = \frac{\mu/\gamma}{1 + e^{\mu(x-\lambda)}} \Rightarrow \frac{L}{1 + e^{\mu(x-\lambda)}}$$

This is the form in which the equation of logistic curve is generally expressed. But

$$C_2 = \frac{A(0)}{\mu - \gamma A(0)} \quad \text{for} \quad x = 0$$
Therefore

\[\frac{A(x)}{\mu - \gamma A(x)} = \frac{A(0)}{\mu - \gamma A(0)} e^{\mu x} \]

Form (4)

\[\frac{d^2 A}{dx^2} = \mu - 2\gamma A \]
so that

\[\frac{d^2 A}{dx^2} > 0 \quad \text{according as} \quad A < \frac{\mu}{2\gamma} \]

The critical value \(\frac{\mu}{2} \) occurs when \(x = \lambda \). Thus the patients growth curve is convex if \(A < \frac{\mu}{2} = \frac{\mu}{2\gamma} \) and concave if \(A > \frac{\mu}{2} = \frac{\mu}{2\gamma} \) and it has a point of inflexion at \(A = \frac{\mu}{2} = \frac{\mu}{2\gamma} \). Equations (4) and (8) show that

(i) \(A(0) < \frac{\mu}{2\gamma} \Rightarrow A(x) < \frac{\mu}{2} \Rightarrow \frac{dA}{dx} > 0 \)

This implies that \(A(x) \) is monotonic increasing function of \(x \) which approaches \(L = \frac{\mu}{2\gamma} \) as \(x \to \infty \), \(L \) is called the saturation level of the patients.

(ii) \(A(0) > \frac{\mu}{2\gamma} \Rightarrow A(x) > \frac{\mu}{2} \Rightarrow \frac{dA}{dx} < 0 \)

This implies that \(A(x) \) is monotonic decreasing function of \(x \) which approaches \(\frac{\mu}{2\gamma} \) as \(x \to \infty \).

(iii) The curve is skew symmetric in the sense that

\[A(\lambda) - A(\lambda - h) = A(\lambda + h) - A(\lambda) \]

\[= \frac{\mu}{2\gamma} \left(\frac{e^{\mu h} - 1}{e^{\mu h} + 1} \right) \quad \text{for every} \quad h \]

The above properties taken together indicate that the curve is shaped like an elongated \(S \) [13]. The graph of \(A(x) \) against \(x \) is given below:

Figure 2
2. Fitting of a Logistic Curve (Method of Rhodes)

If the AIDS patients follows a logistic curve strictly,
\[
\frac{1}{A(x-1)} = \frac{1}{L} + \frac{e^{\mu(\lambda-x+1)}}{L}, \quad \frac{1}{A(x)} = \frac{1}{L} + \frac{e^{\mu(\lambda-x)}}{L}
\]

Therefore,
\[
\frac{1}{A(x)} = \frac{1 - e^{-\mu}}{L} + \frac{e^{-\mu}}{A(x-1)}
\]

Writing
\[
\frac{1}{A(x)} = y(x), \quad \frac{1}{A(x-1)} = X'(x), \quad A = \frac{1 - e^{-\mu}}{L}, \quad B = e^{-\mu}
\]

Equation (11) can be express as
\[
y(x) = A + BX'(x)
\]

Thus if the HIV/AIDS infected population follows exactly a logistic curve then \(y(x)\) and \(X'(x)\) will be linearly related. However it is observed that HIV/AIDS infected population does not follow logistic exactly. Denoting \(A'(x)\) the observed HIV/AIDS infected population at parameter \(x\) and
\[
Y(x) = A'(x), \quad X'(x) = \frac{1}{A''(x)}
\]

we shall have
\[
y(x) = A + BX'(x) + e(x)
\]

where \(e(x)\) is the error due to deviation of observed AIDS patients from the logistic patients.

The estimates are
\[
A^\wedge = a = \bar{Y} - b\bar{X}
\]
\[
B^\wedge = b = \sqrt{\frac{\sum_{i=1}^{N-1}(Y(x) - \bar{Y})^2}{\sum_{i=1}^{N-1}(X(x) - \bar{X})^2}}
\]

where
\[
\bar{X} = \frac{1}{N-1} \sum_{i=1}^{N-1} X(x), \quad \bar{Y} = \frac{1}{N-1} \sum_{i=1}^{N-1} Y(x) = \bar{X} + \frac{1}{N-1} \left[\frac{1}{A(N-1)} - \frac{1}{A(0)} \right]
\]

\(L\) and \(\mu\) are estimated from estimates of \(A\) and \(B\) by relations (12). Finally \(\lambda\) is estimated by noting that for the logistic curve,
\[
\lambda = \frac{1}{\mu} \log\left(\frac{L}{A(x)} - 1 \right) + x
\]
An estimate of λ is obtained as the arithmetic mean

$$\lambda^\wedge = \frac{1}{rN} \sum_{x=0}^{r-1} \left(\frac{L}{A(x)} - 1 \right) + \frac{N - 1}{2}$$

Table 2. HIV/AIDS statistics and features: 1998-2006

<table>
<thead>
<tr>
<th>Years</th>
<th>Adults & children living with HIV/AIDS (millions)</th>
<th>Adults & children newly infected with HIV (millions)</th>
<th>Main mode(s) of transmission for adults living with HIV/AIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>33.40</td>
<td>5.80</td>
<td>Hetero, IDU, MSM, Set workers</td>
</tr>
<tr>
<td>1999</td>
<td>34.32</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>34.805</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>35.612</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>36.515</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>37.863</td>
<td>4.52</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>38.325</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>40.284</td>
<td>4.91</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>39.500</td>
<td>4.30</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>x</th>
<th>$Y(x)$</th>
<th>$L/A(x)$</th>
<th>$\log \left(\frac{L}{A(x)} - 1 \right)$</th>
<th>Total estimated HIV/AIDS infected population (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02994</td>
<td>-0.054605</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0301</td>
<td>-0.041215</td>
<td>34.383</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.02865</td>
<td>-0.041209</td>
<td>35.164</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.028626</td>
<td>-0.041159</td>
<td>35.941</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.027388</td>
<td>-0.041209</td>
<td>36.713</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.026693</td>
<td>-0.041236</td>
<td>37.484</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.025429</td>
<td>-0.041297</td>
<td>38.246</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.024824</td>
<td>-0.041584</td>
<td>39.003</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.023316</td>
<td>-0.041965</td>
<td>39.75</td>
<td></td>
</tr>
</tbody>
</table>

Total $\sum_{i=1}^{n} (Y(x) - \bar{Y})^2 = 24.296 \times 10^{-6}$, $\sum_{i=1}^{n} (X(x) - \bar{X})^2 = 26.758 \times 10^{-6}$, $b = 0.6529$

Therefore

$$\mu = 0.048256$$

$$a = 0.007246$$

$$L = 6.5016$$

$$\lambda^\wedge = -1.393608$$

The logistic curve is

$$A(x) = \frac{6.5016}{1 + e^{0.048256(-1.393608-x)}}$$
The plot between the total estimated HIV/AIDS infected population and the parameter x is plotted in Fig. 3.

![Graph](image)

Figure 3. x vs. total estimated HIV/AIDS infected population

3. **Conclusion**

The hypothesis proposed in this paper follow the Logistic curve but fitting of this Logistic curve (methods of Rhodes), Fig. 3, is neither exponential nor purely S-curve (biological shape), however, from population dynamic theory there are two models of population growth: Exponential curve (also known as a J-curve) which occurs when there is no limit to population size, and the Logistic curve (S-curve) shows the effect of a limiting factor. This shows that in assumed parameter x, which is function of both (α) and (β), the increasing factors (α) of HIV/AIDS infected population is more dominant than the retarding factor (β). Therefore, despite world wide efforts, the population of HIV/AIDS infected persons are still increasing with very high rate compared to the efforts which is being made to retard the growth of HIV/AIDS infected persons. For conspicuous retardation the logistic curve must follow the S-curve, as the S-curve represents that there are some limiting factor which retard the growth of the HIV/AIDS affected populations.

References

5. WHO and UNAIDS. 2006. Global summary of the HIV and AIDS epidemic